diffCheck.df_error_estimation module#

This module contains the utility functions to compute the difference between source and target

class diffCheck.df_error_estimation.DFInvalidData(value)#

Bases: Enum

Enum to define the type of invalid data for joint or assembly analysis

MISSING_PCD = 2#
OUT_OF_TOLERANCE = 1#
VALID = 0#
class diffCheck.df_error_estimation.DFVizResults(assembly)#

Bases: object

This class compiles the resluts of the error estimation into one object

add(source, target, distances, sanity_check=DFInvalidData.VALID)#
Parameters:

sanity_check (DFInvalidData)

filter_values_based_on_valuetype(settings)#
property is_source_cloud#
diffCheck.df_error_estimation.df_cloud_2_df_cloud_comparison(assembly, df_cloud_source_list, df_cloud_target_list)#

Compute the Euclidean distance for every point of a source pcd to its closest point on a target pointcloud

Return type:

DFVizResults

Parameters:
diffCheck.df_error_estimation.df_cloud_2_rh_mesh_distance(source, target, signed=False)#

Calculate the distance between every point of a source pcd to its closest point on a target Rhino Mesh

diffCheck.df_error_estimation.rh_cloud_2_rh_mesh_comparison(assembly, rh_cloud_source_list, rhino_mesh_target_list, signed_flag, swap)#

Computes distances between a pcd and a mesh and return the results

Parameters:
  • assembly (DFAssembly) – the DFAssembly object

  • rh_cloud_source_list (List[PointCloud]) – list of point clouds after segmentation in Rhino format

  • rhino_mesh_target_list (List[Mesh]) – list of rhino meshes

  • signed_flag (bool) – flag to compute signed distances

  • swap (bool) – this mean we want to visualize the result on the target mesh (or viceversa)

Return type:

DFVizResults

Returns:

the results of the comparison

diffCheck.df_error_estimation.rh_mesh_2_df_cloud_distance(source, target, signed=False)#

Calculate the distance between every vertex of a Rhino Mesh to its closest point on a PCD