diffCheck.df_error_estimation
module#
This module contains the utility functions to compute the difference between source and target
- class diffCheck.df_error_estimation.DFInvalidData(value)#
Bases:
Enum
Enum to define the type of invalid data for joint or assembly analysis
- MISSING_PCD = 2#
- OUT_OF_TOLERANCE = 1#
- VALID = 0#
- class diffCheck.df_error_estimation.DFVizResults(assembly)#
Bases:
object
This class compiles the resluts of the error estimation into one object
- add(source, target, distances, sanity_check=DFInvalidData.VALID)#
- Parameters:
sanity_check (DFInvalidData)
- filter_values_based_on_valuetype(settings)#
- property is_source_cloud#
- diffCheck.df_error_estimation.df_cloud_2_df_cloud_comparison(assembly, df_cloud_source_list, df_cloud_target_list)#
Compute the Euclidean distance for every point of a source pcd to its closest point on a target pointcloud
- Return type:
- Parameters:
assembly (DFAssembly)
df_cloud_source_list (List[DFPointCloud])
df_cloud_target_list (List[DFPointCloud])
- diffCheck.df_error_estimation.df_cloud_2_rh_mesh_distance(source, target, signed=False)#
Calculate the distance between every point of a source pcd to its closest point on a target Rhino Mesh
- diffCheck.df_error_estimation.rh_cloud_2_rh_mesh_comparison(assembly, rh_cloud_source_list, rhino_mesh_target_list, signed_flag, swap)#
Computes distances between a pcd and a mesh and return the results
- Parameters:
assembly (
DFAssembly
) – the DFAssembly objectrh_cloud_source_list (
List
[PointCloud
]) – list of point clouds after segmentation in Rhino formatrhino_mesh_target_list (
List
[Mesh
]) – list of rhino meshessigned_flag (
bool
) – flag to compute signed distancesswap (
bool
) – this mean we want to visualize the result on the target mesh (or viceversa)
- Return type:
- Returns:
the results of the comparison
- diffCheck.df_error_estimation.rh_mesh_2_df_cloud_distance(source, target, signed=False)#
Calculate the distance between every vertex of a Rhino Mesh to its closest point on a PCD